Automating Software Repair

Name and Last Name: Amir Arsalan Yavari
Supervisor: Dr. Elham Mahmoudzadeh By

1. Introduction
Concept of Problem:

Software testing and repair is a fundamental part of the software
production lifecycle. In this phase, software is tested, and
software defects and errors are identified and corrected. The
increasing complexity of software and the growing number of
software applications have made it necessary for us to use
automated software repair methods because manual methods
are costly and time consuming.

Method of Work:
Faulty Repair
Input Program Tests
l APR Technique
Step 1 Fault Localization
Step 2 Variant Creation
Step 3 Variant Validation
l, No
Valid
l Yes
Output Potential Repaired Program

Inputs: A faulty program and a test suite

Valid State: A suitable state of the program capable of passing
the tests

Problem Objective: Generating potentially corrected program

3. Implementation Method:
How Reward Repair works:

expected output

Syntactic Training

Patch

(Dug-ﬁx Generator candidate| Cross-

patches, (= . > patches Entropy

code only) @y . Loss

=4 T
T backpropagation
R I I T R A AR
Semantic Training — E3
gmg @ S, RO

(compilable R & 1 Eeaton - Exociion

Patch
Generator candidate
Y |—»! patches
e 2

e ®

bug-fix
patches

+ executable
tests)

Dfleronce v | Complabilly v, Plaustie

e

plausile likely-correct
oward teward

nochange non-complable compiable
penaly reward

Weights update
wit
backpropagation
RewardRepair
Ticks Reward Values (R)
expected

output r \ Discriminative Model of RewardRepair

2
Inference oo competl) inference Patch v}
1 input suggestes
(bugs under actual repair) Boom s | |—L__,| Gengrator paiches
e
L= % |

How to use model and tokenization:

model = TSForConditionalGeneration.from pretrained('t5-small', output hidden states=True)
tokenizer = T5Tokenizer.from_pretrained('t5-small’,truncation=True)

tokenizer.add_tokens(['{", '}',"<",""", ">=","¢=","==", 'buggy:", 'context:'])

2. Concept of the Reward Repair Model:

» Calculation of Incorrect Performance Rate:

-00 < Rno—change < Rno—compile <0< Rcompilable <
Rplausible < Rlikely,correct <1

Loss = Losspatch-generator (I-R)

» Two Different type of T5 Transformers:

T5-small: This is the smallest variant of the TS model. It has
fewer parameters and is suitable for basic text-to-text tasks
with relatively small input and output lengths.

T5-base: The base variant is a mid-sized TS5 model with more
parameters than t5-small. It is a good choice for a wide range
of text-to-text tasks and offers a balance between model size
and performance.

4. Results

Training Speed Comparison: T5-base vs. T5-small Results Comparison: T5-base vs. T5-small

Training Speed
Result Quality
s

2

TS-base T5-small

Ts-base TS-small

> Better time to train

»The results are almost the same

5. Conclusions:

The machine learning-based models are still not proficient enough to rectify all
software errors. In this project, efforts have been made to reduce the model training
time, aiming to quickly provide an initial software corrector that can assist software
testers.

Indeed, software testers can utilize automated methods prior to the correction
process to address some of the errors and provide suggestions for others.

